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1 Introduction

In this paper, I study the use of the representation theory of the symmetric group in voting theory [Crisman

and Orrison, 2015]. The reason I choose this paper is that the representation on symmetric groups naturally

applies to voting theory. Besides, as I major in Computer Science, I will deal with many ranking problems

closely related to voting theory. For example, I will deal with realistic problems like the recommended

ordering of goods in the recommendation system, the word prediction in machine translation. In these

problems, the candidate set is usually much large, from 10,000 to 100,000 and I do not just select the top

one. Because designing a model to rank the data can usually make better use of the information. I hope

that the research on representation theory of symmetric group in voting theory can help me understand the

ranking process.

2 Definition

In this section, I introduce some definitions used in this paper. The paper formulates the problem of voting

mathematically.

First, there are some basic definitions.

• Composition: A composition of a positive number n is a list λ = (λ1, . . . , λm), where
∑m
i=1 λi = n

and λi is positive.

• Partition: A partition of n is a list λ = (λ1, . . . , λm), where
∑m
i=1 λi = n and λ1 ≥ · · · ,≥ λm ≥ 1.

• Diagram: A Diagram of composition λ is the left-justified array of boxes that has λi boxes in its ith

row.

• Tableau: A Tableau of composition λ is a Diagram which filled with the numbers 1, 2, . . . , n without

repetition.

• Tabloid: A Tabloid is an equivalence class of Tableau. Two tableaux of shape λ = (λ1, . . . , λm) are

said to be row equivalent if they have the same set of λi numbers for each row i.

• Xλ: The set of tabloids of shape λ.

• Mλ: The vector space of real-valued functions defined on Xλ.

• fx: The indicator function of Mλ with the property that fx(x) = 1 and fx(y) = 0 for all y 6= x. Note

that the set {fx ∈Mλ : x ∈ Xλ} is an orthonormal basis of Mλ with respect to the usual inner product

〈·, ·〉 on Mλ, which is defined by setting 〈f ,g〉 =
∑
x∈Xλ f(x)g(x).

• An action of Sn on Mλ: If σ ∈ Sn, f ∈ Mλ and xλ, then (σ · f)(x) = f(σ−1 · x) is an action of Sn
on Mλ. From this definition, Mλ may be viewed as a module over the group algebra RSn.

• Voting Method T : T is a linear transformation from M (1,...,1) to Mλ. When λ = (1, n− 1), T uses

the information of voting result in M (1,...,1) to assign points to each of the individual candidates. When

λ = (1, . . . , 1), T uses the information of voting result in M (1,...,1) to assign points to full rankings.

• Neutral Voting Method: A voting method when the outcome does not depend on the labels of

candidates. For example, when T is an RSn-module homomorphism, T is a neural voting method.

• Winning Ranking: A ranking that receives at least as many points as all of the other rankings. This

is opposed to simply a winner.

• Specht Module Sµ: The irreducible module of RSn-modules, corresponding to the partition µ.
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• Kostka Number: If λ is a partition of n, then Mλ is isomorphic to a direct sum of Specht moduls, i.e.

Mλ ∼=
⊕

µ κµλS
µ. Each κµλ is a Kostka number and records the multiplicity of each Specht module

in Mλ.

• U0: An irreducible module of M (1,n−1) which is isomorphic to S(n). U0 = {f ∈ M (1,n−1)| f(x) =

f(y) for all x, y ∈ X(1,n−1)}.

• U1: An irreducible module ofM (1,n−1) which is isomorphic to S(n−1,1). U1 = {f ∈M (1,n−1)|
∑
x∈X(1,n−1) f(x) =

0}. Note that U1 is also the orthogonal complement of U0.

• f̂ : The projection of f into U1.

• x0: The tabloid in some Xλ that appears first when the tabloids in Xλ are listed lexicographically.

This tabloid contains the tableau whose entries, when read from left to right and top to bottom, are

the numbers 1, . . . , n in that order.

• Effective Space E(T ): The submodule (kerT )⊥. Note that Mλ = kerT ⊕ (kerT )⊥ and E(T ) is

isomorphic to the image of T .

Note that I do not fully understand Specht module. I think these two papers Specht [1935]; Peel [1975] are

good materials. Besides, there are some definitions about voting theory.

• Profile: A function p ∈M (1,...,1) where p(x) is the number of voters who chose the tabloid x.

• Weighting Vector: A column vector w = [w1, . . . , wn]t in Rn such that w1 ≥ · · · ≥ wn.

• Equivalent Weighting Vectors: Two weighting vectors w and w′ are equivalent if there exist

α, α′ ∈ R such that α > 0 and w′ = αw + α′1. We write w ∼ w′.

• Positional Voting: This a voting procedure. For a given weighting vector w, we can calculate the

points of candidate i as the sum over all the tabloids in X(1,...,1), i.e.
∑
x∈X(1,...,1) p(x)w(i)(x), where

w(i)(x) is the weight of the row the candidate i in x.

• Plurality Voting: A special case of positional voting where w = [1, 0, . . . , 0]t.

• Anti-plurality Voting: A special case of positional voting where w = [1, 1, . . . , 1, 0]t.

• Borda Count: A special case of positional voting where w = [n− 1, n− 2, . . . , 2, 1, 0]t.

• Kendall Tau Distance: A distance function X(1,...,1) × X(1,...,1) → R such that d(x, y) =
(
n
2

)
−∑

i 6=j aij(x)aij(y), where aij ∈ M (1,...,1) is defined by setting aij = 1 whenever candidate i is ranked

above j in x and aij = 0 otherwise.

• K: Define Tz : M (1,...,1) →M (1,...,1) by setting Tz(f) =
∑
σ∈Sn f(σ ·x0)(σ ·z) = f̃ ·z for all f ∈M (1,...,1),

where z ∈M (1,...,1). If z(x) =
∑
i 6=j aij(x)aij(x0), we denote K = Tz for this special case.

3 Theorem

In this section, I’ve written down some useful theorems. First, there are three theorems revealing the

structures of M (1,...,1), M (k,n−k), and M (n).

Theorem 3.1. M (1,...,1) is isomorphic to the regular RSn-module, and thus Mλ ∼=
⊕

µ(dimSµ)Sµ.

Theorem 3.2. If 1 ≤ k ≤ n/2 (so that (n − k, k) is a partition of n), then M (k,n−k) ∼= M (n−k,k) ∼=
S(n) ⊕ S(n−1,1) ⊕ S(n−2,2) ⊕ · · · ⊕ S(n−k,k).
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Theorem 3.3. M (n) corresponds to the trivial RSn-module, thus M (n) ∼= S(n).

The following two theorems say that the positional voting procedure can be viewed as the group algebra

RSn acting on M (1,n−1). From my perspective, the weighting vector w itself is a voting result in M (1,n−1)

and the profile f can be viewed as an element in RSn.

Theorem 3.4. Given the weighting vector w, the positional voting procedure is the module homomorphism

Tw : M (1,...,1) → M (1,n−1) by setting Tw(f)) = 〈f ,w(1)〉c1 + · · · + 〈f ,w(n)〉cn, where ci ∈ M (1,n−1) denotes

the indicator function of the tabloid that candidate i in the top row.

Theorem 3.5. The positional voting procedure result Tw(f) is also the result of the group algebra element

f̃ ∈ RSn acting on the function w ∈M (1,n−1). Specifically, the weighting vector is identified with the function∑n
i=1 wicn ∈M (1,n−1) and f̃ = f(σ · x0).

Proof.

Tw(f) =

n∑
i=1

〈f ,w(i)〉ci

=

n∑
i=1

(
∑

x∈X(1,...,1)

f(x)w(i)(x))ci

=
∑

x∈X(1,...,1)

f(x)

n∑
i=1

w(i)(x)ci

=
∑
σ∈Sn

f(σ · x0)

n∑
i=1

w(i)(σ · x0)ci

=
∑
σ∈Sn

f(σ · x0)

n∑
i=1

wicσ(i)

=
∑
σ∈Sn

f(σ · x0)

n∑
i=1

wicσ(i)

=
∑
σ∈Sn

f̃(σ)(σ ·w)

= f̃w

(1)

�
The following three theorems reveal that if two weighting vectors are not equivalent, there always exist some

profiles that their corresponding voting results by the two weighting vectors can be arbitrarily different. The

proof of these theorems should not be difficult by construction.

From these three theorems, I realize that when I rank the goods in recommendation system, when the

weighting vector of model is not equivalent to “the best weighting vector”, the ranking results can be

arbitrarily bad in the worst case.

Theorem 3.6. Let n ≥ 2, and suppose w1, . . . ,wk ∈ U1 ⊂ M (1,n−1) is linearly independent. For arbitrary

r1, . . . , rk ∈ U1 ⊂ M (1,n−1), there exist infinitely many functions f ∈ M (1,...,1) such that Twi(f) = ri for all

i such that 1 ≤ i ≤ k.

Theorem 3.7. Let w,w′ ∈ M (1,n−1) be weighting vectors. The ordinal rankings of Tw(p) and Tw′(p) will

be the same for all profiles p ∈M (1,...,1) if and only if w ∼ w′.

Theorem 3.8. Let w,w′ ∈ U1 ⊂M (1,n−1) be nonzero weighting vectors. Then two effective spaces E(Tw) =

E(Tw′) if and only if w ∼ w′. Furthermore, if E(Tw) 6= E(Tw′), then E(Tw) ∩ E(Tw′) = {0}.
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Kendall tau distance can be used to do full ranking.

Theorem 3.9. Kendall tau distance is invariant under the action of Sn.

Proof. Let σ ∈ Sn. Notice that if i 6= j, we have:

aij(x)aij(y) + aji(x)aji(y) = aσ(i)σ(j)(x)aσ(i)σ(j)(y) + aσ(j)σ(i)(x)aσ(j)σ(i)(y) (2)

�

Theorem 3.10. For a profile p ∈M (1,...,1), we have K(p) =
∑
i6=j〈p,aij〉aij.

Proof. Notice that Kendall tau distance is invariant under the action of Sn. Using the similar proof as above.

�
The following constructive proof says that any positional voting procedure have the same result of a voting

procedure of full rankings.

Theorem 3.11. For any positional voting procedure Tw, where w ∈M (1,n−1) there exist a voting procedure

of full rankings that have the same result.

Proof. Let b ∈M (1,n−1) be the weighting vector for the Borda Count:

b =

n∑
i=1

(n− i)ci (3)

Next, recall that:

Tw(f) =

n∑
i=1

〈f ,w(i)〉ci (4)

Let the adjoint T ∗B : M (1,n−1) →M (1,...,1), then we create the map T ∗B ◦ Tw : M (1,...,1) →M (1,...,1) where:

T ∗B ◦ Tw(f) =

n∑
i=1

〈f ,w(i)〉bi (5)

Thus, T ∗B ◦ Tw is the corresponding result. �
Following three theorems give the structure of M (1,1,n−2), the effective space of a full ranking to pair-wise

ranking voting procedure, and the effective space of Borda Count. Some details are in [Daugherty et al.,

2009].

Theorem 3.12. M (1,1,n−2) ∼= S(n) ⊕ 2S(n−1,1) ⊕ S(n−2,2) ⊕ S(n−2,1,1)

Theorem 3.13. Let cij ∈M (1,1,n−2) be the indicator function corresponding to the tabloid that has i in the

top row and j in the second row. The map P : M (1,...,1) → M (1,1,n−2) is given by P (f) =
∑
i 6=j〈f ,aij〉cij.

Then the effective space E(P ) ∼= S(n) ⊕ S(n−1,1) ⊕ S(n−2,1,1).

Theorem 3.14. Let b be the weighting vector of Borda Count. Then the effective space E(Tb) ∼= S(n) ⊕
S(n−1,1).

The following theorem is an interesting result of Borda count and Kemeny rule (full ranking procedure

with Kendall tau distance). This means that when adopting easy voting procedure, using Borda count can

guarantee that the top-ranked candidate and bottom-ranked candidate have the same order compared with

Kemeny rule. However, if weighting vector not equivalent to Borda count, this is not guaranteed.

Theorem 3.15. For n ≥ 3 candidates, the Borda count always ranks the Kemeny rule top-ranked candidate

strictly above the Kemeny rule bottom-ranked candidate. Conversely, the Kemeny rule ranks the Borda

count top-ranked candidate strictly above the Borda count bottom-ranked candidate. For any positional voting

method other than the Borda count, however, there is no relationship between the Kemeny rule ranking and

the positional ranking.
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4 Conclusion

In this study, I think that the representation theory of RSn is rather important for voting theory. We need

to the structure of the vector space of real-valued funtions defined on Xλ, which is the direct sum of some

Specht modules Sµ. In voting procedure, Borda count is closely related to Kemeny rule.

References

Karl-Dieter Crisman and Michael E. Orrison. Representation theory of the symmetric group in voting theory

and game theory. CoRR, abs/1508.05891, 2015.

Zajj Daugherty, Alexander K Eustis, Gregory Minton, and Michael E Orrison. Voting, the symmetric group,

and representation theory. The American Mathematical Monthly, 116(8):667–687, 2009.

MH Peel. Specht modules and symmetric groups. Journal of Algebra, 36(1):88–97, 1975.

Wilhelm Specht. Die irreduziblen darstellungen der symmetrischen gruppe. Mathematische Zeitschrift,

39(1):696–711, 1935.

6


